Variable Displacement Pump A10VSO

Series 31, open circuit Axial Piston Swashplate Design

Brueninghaus Hydromatik

MANNESMANN

REXROTH

Size 18

Nominal pressure 4000 psi (280 bar) Peak pressure

Variable displacement axial piston pump A10VSO in swashplate design is designed for hydrostatic transmissions in open circuits.

It can be used in mobile and industrial applications.

Flow is proportional to the drive speed and the displacement. By adjusting the position of the swashplate it is possible to steplessly vary the flow.

- ISO or SAE mounting flange
- SAE flanged connections
- with metric or UNC fixing threads
- 2 case drain ports
- Good suction characteristics
- Permissible continuous operating pressure 4000psi (280 bar)
- Low noise level
- Long service life
- Axial and radial loading of drive shaft possible
- Low specific weight
- Short control times
- Through drive for multi-circuit system possible

/ariable Displacem	nent Pump A10VSO, S	eries 31						
Ordering cod	0		A10\/S 0	10	1	24		
	C		AIUVS U	10	_ / / _	<u> </u>	╷᠆╷╷┘	└┬┸┰┹┲
Aydraulic fiuld	anda)							
Petroleum oli (no	code)							
Axial piston unit								
Swashplate desig	n, variable							
Nominal pressure Peak pressure 51	e 4000 psi (280 bar) 00 psi (350 bar)		10VS					
Node of operation	า							
Pump, open circu	it		0					
Size								
Displacement V_g	_{max} 1.10 in ³ (18 cm ³)		18					
Control device								
Pressure control		DR	•	DR				
		DR G	•	DRG				
remote cont				050				
Fressure and nov			•	DFR1				
X-channel r	luaaed		•					
Pressure and flov	v control, electronic	DFE1	•	DFE1				
		DFEE	•	DFEE	**			
Series				•	•			
				31		_		
Direction of Rotat	ion							
Viewed on drive s	haft	clockwise		R				
		counter-cloc	kwise	L				
Seals								
NBR- (Buna-N) /	shaft seal FPM				Р			
FPM-					V			
Shaft end				DIN	SAE			
Parallel with key	DIN 6885				-	Р		_
Parallel with key	19-1 (SAE A-B)			-	•	K		
Splined	19-4 (SAE A-B, 3/4")				•	S	_	
Splined	16-4 (SAE A, 5/8", no	t suitable for through d	rive)	-	•	U -	_	
Splined	19-4 (SAE A-B) modif	ied				R		
Mounting flange						-		
ISO 2-hole					-	A	4	
SAE 2-11018	t '			_	•	ل ل]	
Service line conn							۹	
FORS B and S	metric fixing threads			•	_	12	4	
	SAE ports on opposit UNC fixing threads			•	●	62		
Through drive								
Without through d	lrive	· · · · · · · · · · · · · · · · · · ·				N00	4	
Whith through drive	e for building on axial p	iston unit or gear pump)					
Mountine flag	SOUTICOUDING	for mounting:				1/04	4	
Mounting flange	Splined shaft 16-1 (St	$\Delta E \Delta \cdot 5/8"$) C2						
Mounting flange 82-2 (SAE A) 82-2 (SAF A)	Splined shaft 16-4 (S/ Splined shaft 19-4 (S/	AE A; 5/8") G2 AE A-B: 3/4")A10\/SO	18			K01 K52	-	

Hydraulic fluid

The A10VSO pump in the standard design should be used with good quality, petroleum oil based, anti-wear hydraulic fluids. More detailed information please see our data sheet RA 90220.

Operating viscosity range

In order to obtain optimum efficiency and service life we recommend that the operating viscosity (at operating temperature) be selected from within the range:

Viscosity limits

The limiting values for viscosity are as follows:

- v_{min} = 60 SUS (10 mm²/s) short-term at maximum permissible drain temperature of 195°F (90°C)
- v_{max} = 4600 SUS (1000 mm²/s) or 1400 SUS (300 mm²/s) with built-on boost pump short-term on cold start

Temperature range

 $t_{min} = -13^{\circ} (-25^{\circ} \bar{C})$

 $t_{max} = + 195^{\circ} F (+ 90^{\circ} C)$

Selection diagram

Notes on hydraulic fluid selection

In order to select the correct fluid it is necessary to know the operating temperature in the tank (open loop) in relation to the ambient temperature.

The hydraulic fluid should be selected so that, within the operating temperature range, the fluid viscosity is within the optimum range (v_{opl}) - see shaded area of selection diagram. We recommend that the higher viscosity grade is selected in each case.

Example: At an ambient temperature of X° the operating temperature in the reservoir is 140° F (60°C). In the optimum operating viscosity range ν_{opt} (shaded area), this corresponds to viscosity grades VG 46 or VG 68. VG 68 should be selected.

Important: The leakage fluid (case drain fluid) temperature is influenced by pressure and speed and is typically higher than the tank temperature. However, maximum temperature at any point in the system must be less than 195° F (90° C).

If it is not possible to comply with the above conditions because of extreme operating parameters or high ambient temperature, please consult us.

Fluid filtration

Correct functioning of the unit calls for a minimum level of cleanliness

to NAS, 1638 class 9 to SAE, class 6 or

to ISO/DIS 4406 18/15

This can be achieved, for example, using filter element type ...D 020...(see RE 31278).

This gives a filter quotient of

 $\beta_{20} \ge 100.$

Mechanical flow limiting

Mechanical flow limiting on the version without through drive it is standard, it is not possible with through drive

 \mathbf{Q}_{max} : Setting range $V_{\text{g max}}$ to 50 % $V_{\text{g max}}$

Combination pumps

1. If a second Brueninghaus Hydromatik pump is fitted in the factory, both ordering codes should be joined with "+".

Typical order format: A10VSO 18DFR/31R-PSC62K52 + A10VSO 18DFR/31R-PSC62N00

2. If a gear pump is fitted in the factory please consult us (RE 90139 in preparation).

Technical data

Operating pressure range - Inlet side

Absolute pressure at port S

р	12 psi	(0.8 bar)
 abs min 		, jan j
D .	435 ps	i (30 bar)
abs max		(00 00.)

Operating pressure range - Outlet side

Pressure at port B

Nominal pressure p_N _ 4000 psi (280 bar) Peak pressure p_{max} – _ 5100 psi (350 bar) (Pressure information to DIN 24312)

Applications at intermittent operating pressures of up to 4600 psi (315 bar) at 10% duty are permissible.

Case drain pressure

Maximum permissible pressure of case drain fluid (at port L, L,): Maximum 7 psi (0.5 bar) higher than inlet pressure at port S, but no higher than 30 psi (2 bar) absolute.

Direction of flow

S to B.

Determination of inlet pressure $\mathbf{p}_{_{abs}}$ at suction port S or reduction in output flow for increasing speed

Table of values (theoretical values, without considering η_{mh} and η_{v} ; values rounded)

Size				18		
Displacement		V _{g max}	in³	1.10	(cm ³	18)
Max. speed ¹)	at V _{g max}	n _{o max}	rpm	3300		
Max. permissible speed (speed limit) on increase in inlet pressure p_{abs} or V_{g}	< V _{g max}	n _{o max peri}	" rpm	3900		
Max. flow	at n _{o max}	Q _{o max}	gpm	15.7	(L/min	59.4)
Max. power $\Delta p = 4000 \text{ psi} (280 \text{ bar})$	at n _{o max}	P _{o max}	HP	36.6	(kW	27.7)
Max. torque $\Delta p = 4000 \text{ psi}$ (280 bar)	at V _{g max}	T _{max}	lb-ft	58.3	(Nm	80.1)
Torque $\Delta p = 1000 \text{ psi} (100 \text{ bar})$	at V _{g max}	Т	lb-ft	14.6	(Nm	28.6)
Moment of inertia about drive axis		J	lb-ft ²	0.022	(kgm ²	0.00093)
Fill capacity			gal	0.1	(L	0.4)
Weight (without oil fill)		m	lbs	26.5	(kg	12)
Permissible shaft loading Max. permissible axial force		F _{ax max}	lbf	157	(N	700)
Max. permissible radial force ²)		$F_{q\ max}$	lbf	79	(N	350)

1) These values are valid for an absolute pressure of 14.5 psi (1 bar) at suction port S.

By reducing the output flow or increasing the input pressure the speed can be increased as shown in the diagram.

²) For higher radial forces please consult us.

Reference formulas

Flow
$$Q = \frac{V_g \cdot n \cdot \eta_v}{231}$$
 gpm $\left(\frac{V_g \cdot n \cdot \eta_v}{1000} + L/min\right)$
Torque $T = \frac{V_g \cdot \Delta p}{24 \cdot \pi \cdot \eta_{mh}}$ lb-ft $\left(\frac{1.59 \cdot V_g \cdot \Delta p}{100 \cdot \eta_{mh}} + Nm\right)$
Power $P = \frac{T \cdot n}{5252} = \frac{Q \cdot \Delta p}{1714 \cdot \eta_t}$ HP $\left(\frac{2\pi \cdot T \cdot n}{60000} = \frac{T \cdot n}{9549} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t}$ kW $\right)$

Application of forces

- = geometric displacement in³ (cm³) V_q per revolution
- = Differential pressure psi (bar) Δр n
 - = Speed (rpm)
- = Volumetric efficiency η
- = Mechanical hydraulic efficiency η_{mh}
- = Total efficiency $(\eta_t = \eta_v \cdot \eta_{mb})$ η_{t}

Installation notes

The installation position is optional. The pump housing must be filled with hydraulic fluid during commissioning and stay full when operating. In order to ensure the lowest possible noise values all connections (suction, pressure and drain connections) must be flexible.

Avoid a non-return valve in the drain line. In exceptional cases this may be permissible, but only after prior consultation with us.

Characteristic curves for pump with pressure control DR

Noise levels

Measured in an anechoic chamber Distance from microphone to pump = 3.3 ft (1 m) Measuring error: ± 2 dB (A) (Fluid: ISO VG 46 DIN 51519, t = 122° F (50° C)

Drive power and output flow

Fluid:

Size 18

Hydraulic oil ISO VG 46 DIN 51519, t = 122° F (50° C)

Unit dimensions size 18

ISO version

Through drive version N00 (without through drive) not including control

Shaft end "P"

Before finalising your design, please request a certified drawing. Dimensions in inches and millimeters ().

Unit dimensions size 18

SAE version

Through drive version N00 (without through drive) not including control

DR Pressure control

The constant pressure control serves to maintain a constant pressure in a hydraulic system within the control range of the pump. The pump therefore supplies only the amount of hydraulic fluid required by the system. Pressure may be steplessly set at the pilot valve.

Static curve

at $n_1 = 1500$ rpm; $t_{oil} = 122^{\circ}$ F (50° C)

Dynamic Curves

The operating curves are measured mean values taken under test conditions with the unit mounted inside the tank.

Conditions: n = 1500 rpm $t_{n} = 122^{\circ} \text{ F} (50^{\circ} \text{ C})$

 $t_{oii} = 122^\circ$ F (50° C) Pressure cut-off at 5100 psi (350 bar)

Load steps were obtained by suddenly opening and closing the pressure line with a pressure relief valve as load valve 3.3 ft (1 m) from the mounting flange of the axial piston unit.

Ports

B Pressure port

S Suction port L, L, Case drain ports (L, plugged)

L, L_1 Case drain points (L_1 plugged)

Control data

Hysteresis and pressure increase Δp _____ max. 60 psi (4 bar) Pilot oil requirement _____ max. approx. 0.8 gpm (3 L/min) Loss of flow at Q_{max} see page 5.

Control time

	t _{sa} (ms)	t _{sa} (ms)	t _{se} (ms)
Size	against 725 psi (50 bar)	against 3200 psi (220 bar)	zero stroke 4000 psi (280 bar)
18	50	25	20

Unit dimensions

Pilot valve installed here

for counter-clockwise rotation

Pilot valve installed here for clockwise rotation

Before finalising your design, please request a certified drawing. Dimensions in inches and millimeters ().

DRG Pressure control, remote controlled

Function and equipment as for DR.

A pressure relief valve can be connected here at port X. This is not included in the items supplied for the DRG control

The standard setting for differential pressure at the pilot valve is 290 psi (20 bar). The amount of pilot oil required is approx. 0.4 gpm (1.5 L/min). If a different setting is required - range 145-320 psi (10-22 bar) - please indicate in clear text.

We recommend the following as a separate pressure relief valve: DBDH 6 (hydraulic) to RA 25 402,

DBEC-3X (electrical) to RA 29 142 or

DBETR -SO 381 w. nozzle 0.03 DIA (ø 0.8 mm) in P (electrical) to RA 29 166.

Max. line length should not exceed 6.5 ft (2 m).

Static curve

at n₁ = 1500 rpm; t_{oil} = 122° F (50° C)

Control data

Hysteresis and pressure increase Δp _____ max. 60 psi (4 bar) Pilot oil requirement ______ approx. 1.2 gpm (4.5 L/min) Loss of flow at Q_{max} see page 5.

Ports

B Pressure port

S Suction port

L, L₁ Case drain ports (L₁ plugged)

X Pilot pressure port

Unit dimensions

Size	A ₁	A ₂	A ₃	A ₄	A ₅	Port X
18 _{ISO}	4.11	4.94	4.29	1.57	4.29	M14x1.5;0.47 deep
	(104.5)	(125.5)	(109)	(40)	(109)	(M14x1.5;12 deep)
18 _{sae}	4.11	4.94	4.29	1.57	5.12	7/16-20 UNF-2B;0.39 deep
	(104.5)	(125.5)	(109)	(40)	(130)	7/16-20 UNF-2B;10 deep

DFR1/DFR Pressure - Flow Control

In addition to the pressure control, it is also possible to set the pump flow by means of differential pressure at the operator (e.g., a throttle); load sensing.

In model DFR, an additional bleed down orifice is provided to vent trapped pressure in the load sense line.

Static curve

at $n_1 = 1500$ rpm, $t_{oil} = 122^{\circ} F (50^{\circ} C)$

Dynamic flow control curve

The curves are mean values measured under test conditions, pump in tank (bar) psi

Control time

Size	t _{sa} (ms)	t _{se} (ms)	t _{se} (ms)
	stand by-4000 psi	4000 psi-stand by	725 psi-stand by
	(stand by-280 bar)	(280 bar-stand by)	(50 bar-stand by)
18	40	15	40

Standard setting: 200 psi (14 bar). If another setting is required

please state in clear text. When pressure is relieved on port X to tank a stalled pressure of $p = 260 \pm 30 \text{ psi} (18 \pm 2 \text{ bar})$ ("stand by") is set.

Control data

DFR1

Max. flow deviation (hysteresis and increase) measured at drive speed n = 1500 rpm

Size	1	8	
ΔQ_{max}	0.24 gpm	(0.9 L/n	nin)
Hysteresis a	ind pressure increa	ase Δp	max. 75 psi (5 bar)
Pilot oil requ	irement DFR	max.	approx. 0.8 1.2 gpm
		(max.	approx. 3 4.5 L/min)
Pilot oil requ	irement DFR1	max. ap	prox. 0.8 gpm (3 L/min)
Loss of flow	at Q _{max} see page 5	5.	

Before finalising your design, please request a certified drawing. Dimensions in inches and millimeters ().

Unit dimensions

18_{SAE}

4.11

4.94

(104.5) (125.5) (109) (40)

4.29

1.57

5.12

7/16-20 UNF-2B;0.39 deep

(130) 7/16-20 UNF-2B;10 deep

DFE1 Pressure and flow control, electronic

Pressure and flow to the pump are controlled by an electrically operated proportional valve. Flow control is via the variable pump swivel angle without compensation for drive speed variations (e.g. due to the diesel motor). Pump pressure and pump position are signalled via a pressure sensor and inductive positional transducer to the amplifier card which is required to operate the closed loop control.

DFE1 model pump is suitable for operation with analogue amplifier card VT 5041.

The amplifier card and the pressure sensor should be ordered separately.

For safety reasons an additional pressure relief valve should be installed in addition to the pump pressure control. This is to safeguard the maximum permissible operating pressure.

For further information and some typical applications see data sheet RA 30 022.

Static curves

Control data

Hysteresis	< 1% of V
Repeatability	<1%
Pilot oil requirement	max. approx. 0.66 gpm (2.5 L/min)

Loss of flow at $\ensuremath{\mathsf{Q}_{\text{max}}}$ see page 5.

Dynamic curves

Pressure stepped signal value e.g. 580 psi – 1750 psi (40 bar–120 bar)

DFE1 45 with compression oil volume (1.3 gal / 5 L)

Ports

B Pressure port

S Suction port

L, L1 Case drain ports (L1 plugged)

Components

1 A10VSO with hydraulic setting device

1.1 Proportional valve

1.2 Inductive positional transducer (LVDT)

Pressure sensor and control electronics are loose items (please order separately to RA 67016)

Pressure stepped signal value 1750 psi – 580 psi (120 bar – 40 bar)

DFE1 45 with compression oil volume (1.3 gal / 5L)

Before finalising your design, please request a certified drawing. Dimensions in inches and millimeters ().

Unit dimensions

Through drive

The A10VSO axial piston unit can be supplied with through drive in accordance with the coding on page 3.

The type of through drive is determined by the coding (KXX).

The following are included in the supply: Coupler, mounting screws, o-ring seal and, if required, an intermediate flange.

Combination pumps

By building on other pumps mutually independent circuits can be made available for use.

1. If the combination pump consists of **2 Brueninghaus Hydromatik units** and if these are to be **supplied assembled** then the two ordering codes should be

joined with "+". Typical order: A10VSO 18 DR/31 R-PSC62K52 + A10VSO 18 DR/31 R-PSC62N00

2. If a gear- or radial piston pump is to be fitted at the factory please consult us.

Permitted through drive torque

Si	ze		18	
Ma	ax. permitted. total thro	ough drive	e torque at s	shaft " K ", Pump 1
(P	ump 1 + Pump 2)	T _{tot max}	lb-ft 59	(Nm 80)
1	Permitted.through	T _{D1max}	lb-ft 59	(Nm 80)
I	drive torque.	T _{D2max}	lb-ft 0	(Nm 0)
2	Permitted.through	T _{D1max}	lb-ft 0	(Nm 0)
2	drive torque.	T _{D2max}	lb-ft 59	(Nm 80)
Ma	ax. permitted. total thro	ugh drive	e torque at s	shaft " S ", Pump 1
(P	ump 1 + Pump 2)	T _{tot max}	lb-ft 74	(Nm 100)
1	Permitted.through	T _{D1max}	lb-ft 59	(Nm 80)
	drive torque.	T _{D2max}	lb-ft 15	(Nm 20)
2	Permitted.through	T _{D1max}	lb-ft 15	(Nm 20)
2	drive torque.	T _{D2max}	lb-ft 59	(Nm 80)
Ma	ax. permitted. total thro	ough drive	e torque at s	shaft " R ", Pump 1
(P	ump 1 + Pump 2)	T _{tot max}	lb-ft 105	(Nm 143)
1	Permitted.through	T _{D1max}	lb-ft 59	(Nm 80)
_	drive torque.	T _{D2max}	lb-ft 46	(Nm 63)
2	Permitted.through	T _{D1max}	lb-ft 46	(Nm 63)
2	drive torque.	T _{D2max}	lb-ft 59	(Nm 80)
Ma	ax. permitted. total thro	ough drive	e torque at s	shaft " U ", Pump 1
(P	ump 1 + Pump 2)	T _{tot max}	lb-ft 59	(Nm 80)
1	Permitted.through	T _{D1max}	lb-ft 37	(Nm 50)
_	drive torque.	T _{D2max}	lb-ft 0	(Nm 0)
2	Permitted.through	T _{D1max}	lb-ft 0	(Nm 0)
2	drive torque.	T _{D2max}	lb-ft 27	(Nm 50)

Permitted bending moment

Sizo	10
$T_{m} = (m_1 \bullet I_1 \cdot I_1)$	+ $m_2 \bullet l_2 + m_3 \bullet l_3) \bullet \frac{1}{102}$ lb-ft
I_1, I_2, I_3	(mm) Center to center spacing
m., m., m.	(kg) Weight of pump
$T_{m} = (m_1 \bullet I_1 -$	$\mathbf{H} \mathbf{m}_2 \bullet \mathbf{l}_2 + \mathbf{m}_3 \bullet \mathbf{l}_3 \bullet \frac{1}{12}$ lb-ft
$ _{1}, _{2}, _{3}$	(inches) Center to center spacing
m ₁ , m ₂ , m ₃	(lbs) Weight of pump

Size		18	
Permitted bending moment	T _{m perm.}	lb-ft 37	(Nm 50)
Weight	m	lbs 26.5	(kg 12)
Center to center spacing	I ₁	in 3.54	(mm 90)

CAUTION!!

Maximum pressure with shaft "U," size 18 at full displacement: 2500 psi (175 bar)

RA 92 712/05.95

Variable Displacement Pump A10VSO, Series 31

Before finalising your design, please request a certified drawing. Dimensions in inches and millimeters ().

Unit dimensions: combination pumps A10VSO (AA10VSO) + A10VSO

Main p.		A10V	SO 18	3	AA10VSO 28				AA10VSO 45				AA10VSO 71				AA10VSO 100				AA10VSO 140			40
2 nd pump	A ₁	A ₂	A_{3}	A ₄	A ₁	A ₂	A_3	A_4	A ₁	A ₂	A_3	A ₄	A ₁	A_2	A_3	A_4	A ₁	A ₂	A ₃	A_4	A ₁	A ₂	A ₃	A ₄
A10VSO 18	5.71	7.16	12.87	14.84	6.46	8.03	13.74	15.71	7.24	9.02	14.72	16.69	8.54	10.51	16.22	18.19	10.83	13.31	19.02	20.98	10.83	13.78	19.49	21.46
	(145)	(182)	(327)	(377)	(164)	(204)	(349)	(399)	(184)	(229)	(374)	(424)	(217)	(267)	(412)	(462)	(275)	(338)	(483)	(533)	(275)	(350)	(495)	(545)
	See RE 92711																							

Flange 82-2 (SAE A) 2-bolt; for mounting of gear pump G2 (splined shaft): Ordering code **K01** or mounting of axial piston pump A10VSO 18 (splined shaft "S"): Ordering code **52** or mounting of axial piston pum A10VSO18 (splined shaft "R"): Ordering code **KA1**

/ariable Displa	cement Pump A	10VSO, Se	ries 31													
				[DFEE		1:	31	R -	ΡI	K C	6	2	100	2	С
				-												Τ
Control type																
Proportional p	pressure and flow	w control		DF	EE											
Additiona fun	ctions															
Electronics w	ithout additional	functions			om	t										
Electronics w	ith power limitati	ion as additi	onal functions	•	3											
Series																
							31	1								
								J								
Direction of ro	otation			<u> </u>			_		4							
Viewed on sh	aft end		Right hand, c	ockwise				R	-							
			Left hand, col	Inter-cloci	kwise			L								
Seals																
Buna-N (NBR	per DIN ISO 16	629); shaft s	eal FPM (fluo	rocarbon)					Р							
Choft and																
	ooft									ĸ	1					
SAE-keyed S	shaft								_	<u> </u>	-					
OAL-spined (Shart									5	1					
Mounting flan	ge															
SAE 2-hole fla	ange mounting f	lange									С					
SAE 4-hole fla	ange mounting f	lange, size	140 only								D					
Service ports					28	48	7	71	100	140)					
Ports A/B	Opposite side	ports, SAE f	ilange, standa	rd series,	•	•		_	•	•	6	2	1			
	Opposite side B port size 1",	ports, SAE f	ilange, standa ing screws (C	rd series, ode 61)	_	_		•	_	-	9	2				
Thru drivo													-			
No thru-drive												Г	NOO	-		
With thru-driv	e: for details see	RA 92 711										-	KXX	-		
	-,															
SYDZ sequen	ce valve option															
Without seque	ence valve	0 0000000	limitation	<u> </u>	; (202.)	or*								omit	_	
With sequence	e and relief valv	e, pressure	limitation up t	0 2900 ps	i (200 b	ar)*								1 2	-	
With sequence	e and relief valv		limitation up t	$\frac{0.3000 \text{ps}}{0.4350 \text{ns}}$	i (200 L	ar)*							-+	- 3	-	
Thin boquone		<u>o, procouro</u>		<u>- 1000 po</u>		ui)								<u> </u>		
Pressure trans	sducer input va	alue (pactua	al)													
Current input	4 to 20 mA														C	
Voltage input	0–10 Volts														<u>v</u>	_
Voltage input	1–10 Volts														E	
Special optior	is															
Without conne	ecting cable															1
Connector wit	th cable 5 meter	(15 ft) long														2
Connector with	th cable 10 mete	er (30 ft.) Ion	g													3
Connector wit	th cable 20 mete	er (60 ft) long	g													4
								_	_				_		_	

Rexroth Hydraulics Div., Industrial, 2315 City Line Road, Bethlehem, PA 18017-2131 Tel. (610) 694-8300 Fax: (610) 694-8467 Rexroth Hydraulics Div., Mobile, 1700 Old Mansfield Road, Wooster, OH 44691-0394 Tel. (330) 263-3400 Fax: (330) 263-3333